Reg. No.:

Fifth Semester B.Tech. Degree Examination, November 2014 (2008 Scheme) 08.501 : ENGINEERING MATHEMATICS - IV (CMPU)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

1. Find the value of K for which the following is a probability distribution function. Also find the mean.

X 0

2

 $\frac{K}{2}$ $\frac{K}{3}$ $\frac{K+1}{3}$ $\frac{2K-1}{6}$

- 2. A die is tossed thrice. A success is getting '1 or 6' on a toss. Find the mean and variance of the success.
- 3. If X is a Poisson variate such that P[X = 1] = P[X = 2]. Find P[X = 4].
- 4. For a normally distributed variate with mean 1 and standard deviation 3, find the probability that $3.43 \le X \le 6.19$.
- 5. Write the normal equations for fitting a curve of the form $y = ae^{bx}$.
- 6. Show that coefficient of correlation satisfies the relation $-1 \le r \le 1$.
- 7. Interpret the regression coefficients y on x and x on y.
- 8. Solve graphically

Maximize
$$Z = 4x_1 + 10x_2$$

Subject to
$$5x_1 + 3x_2 \le 15$$

$$2x_1 + 5x_2 \le 10, x_1, x_2 \ge 0.$$

9. Rewrite in standard form the following LPP.

Maximize,
$$Z = 2x_1 + x_2 + 4x_3$$

Subject to $-2x_1 + 4x_2 \le 4$
 $x_1 + 2x_2 + x_3 \ge 5$
 $2x_1 + 3x_3 \le 2$

where $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

10. Construct the dual of

Minimize
$$Z = 2x_1 + 3x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 = 3$
 $x_1 + 4x_2 + 6x_3 \le 0$
 $x_1, x_2, x_3 \ge 0$.

PART-B

Answer one question from each Module. Each question carries 20 marks.

Module - I

11. a) Verify whether the function $f(x) = \frac{1}{18}(3 + 2x), 2 \le x \le 4$

= 0, otherwise

is a probability distribution function. If so find P[$3.43 \le X \le 6.19$].

- b) If the probability that an individual suffers a bad reaction from a certain injection is 0.002, determine the probability that out of 1000 individuals (i) exactly 3 (ii) more than 3 individuals will suffer the bad reaction.
- c) In a normal destribution 5% of the items are below 60 and 40% are between 60 and 65. Find the mean and standard deviation of the distribution.
- 12. a) If X has a uniform distribution in (-K, K), K > 0 find K such that P[|X| < 1] = P[|X| > 1].
 - b) A machine manufacturing screws is known to produce 5% defectives. In a random sample of 15 screws what is the probability that there are
 - i) exactly 2 defectives
 - ii) not more than 3 defectives.

ITUTE OF

- c) The time is hours required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{20}$. What is the probability that the required time
 - i) exceeds 30 hrs
 - ii) is between 16 hrs and 24 hrs
 - iii) at most 10 hrs.

Module - II

13. a) From the following data, find the most likely value of y when x = 24

	У	X		SCI INSTI
Mean	985.8	18.1	r = 0.58	OTORIAL CSI INST.
Standard Deviation	36.4	2.0		TRIVANDR
F1	2 1 1	2 4 - 4 - 4 -	llaudaa data .	3

b) Fit a parabola of the form $y = a + bx^2$ to the following data:

x: 1 2 3 4 5 **v**: 0.43 0.83 1.4 2.33 3.42

- c) The mean operating life for a random sample of 10 light bulbs is 4000 hrs with standard deviation 200 hrs. Estimate 95% confidence interval for the population mean.
- 14. a) Two lines of regression are x + 2y 5 = 0 and 2x + 3y 8 = 0 and variance x = 12. Find \overline{x} , \overline{y} and r.
 - b) A stenographer claims that she can take dictation at the rate of 120 words per minute. Can we reject her claim on the basis of 100 trials in which she demonstrates a mean of 116 words with a standard deviation of 15 words. Use 5% level of significance.
 - c) A coin is tossed 10,000 times and 'Head' turns up 5195 times. Is the coin unbiased?

Module - III

- 15. a) Ten grams of the alloy A contains 2 gm of copper, 1 gm of zinc and 1 gm of lead. Ten grams of alloy B contains 1 gm of copper, 1 gm of zinc and 3 gm of lead. It is required to produce a mixture of these alloy containing at least 10 gms of copper, 8 gms of zinc and 12 gms of lead. Alloy B costs 1.5 times as much per kg as alloy A. Find the amount of alloy A and alloy B which must be mixed in order to satisfy the restriction of the composition and at the same time keeping the cost a minimum. Formulate the problem as a linear programming problem.
 - b) Find the solution of the following problem by considering its dual

Minimize,
$$Z = 10x_1 + 2x_2 - 12x_3$$

Subject to $x_1 - 2x_2 - 4x_3 \ge 3$
 $-x_1 - 3x_2 + x_3 \le 1$, $x_1, x_2, x_3 \ge 0$.

16. a) Solve graphically,

Minimize,
$$Z = 2x_1 + x_2$$

Subject to $5x_1 + 10x_2 \le 50$
 $x_1 + x_2 \ge 1$
 $x_2 \le 4$
 $4x_1 + 6x_2 \le 48, x_1, x_2 \ge 0.$

b) Solve by Simplex method,

Maximize,
$$Z = 2x_1 + 2x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + x_3 \le 300$
 $x_1 + x_2 + 3x_3 \le 300$
 $x_1 + 3x_2 + x_3 \le 240$, $x_1, x_2, x_3 \ge 0$.